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hence the derivatives: 

- -  - - - -  + - - 7 "  
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These derivatives are used as described in the acen- 
tric case. 
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Abstract 

The approach described by Bricogne & Gilmore [Acta 
Cryst. (1990). A46, 284-297] (I) is applied to three 
small organic molecules. Phase extension for sucrose 
o c t a a c e t a t e  (C28H38019) from a basis set of 300 cor- 
rectly phased U magnitudes confirms the stability 
of the exponential modelling and plane-search 
algorithms under very demanding conditions; the 
extrapolated phases are of comparable quality with 
those produced by the tangent formula, although it 

is possible, by overfitting the observed and calculated 
U magnitudes, to obtain results that are better 
than tangent refinement. The ab initio phasing of two 
small molecules, one (diamantan-4-ol, Cl4H2oO ) 
centrosymmetric and the other [(-)-platynecine, 
CsHIsNO2] non-centrosymmetric, shows that the 
likelihood function is a more powerful discriminator 
between phase choices than any figure of merit 
hitherto available in conventional direct methods; 
correct discrimination of phase sets arising from 
phase-angle permutation is readily achieved even in 
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situations where less than ten phased reflexions are 
in the basis set. In the non-centrosymmetric case, 
the conditional probability criterion P(~q) oc 

~q(x)2/qME(x) d3x [I, equation (1.4)] plays a vital 
r61e in exploring the multimodality of statistical phase 
indications and is used as a filter in building the 
phasing tree. Finally, the likelihood function is 
successfully used in phase refinement in (-)-platy- 
necine where the mean absolute phase error is 
reduced by 6.1 ° for the acentric reflexions using a 
basis set of only 27 reflexions. Such a calculation 
would be impossible in traditional direct methods. 

0. Introduction 

This paper describes the practical application of the 
approach presented in the previous paper (Bricogne 
& Gilmore, 1990; hereafter referred to as I) to three 
small crystal structures. A preliminary report has 
already been published (Bannister, Bricogne & Gil- 
more, 1989) although there are significant differences 
with this paper. Throughout, the term likelihood is 
used to refer to the logarithm of the likelihood 
ratio L =  L ( U * ) - L ( 0 )  (I, § 1.4) and the symbol Z 
[see I, equation (2.10)] is used as a generic term for 
Z,, or Zc whichever is appropriate; the context should 
make the usage clear. § 1 describes the structures 
under study and discusses the data-preparation 
methods used, in particular the estimation of 0-2, the 
variance of[ Uhl °b~. § 2 outlines the computer program 
developed for constrained entropy maximization and 
likelihood estimation. This program, MICE, incor- 
porates the theory developed in I and includes 
exponential modelling with plane search (I, § 2.3), 
likelihood estimation (I, § 2.4), Z refinement (I, § 2.4 
and Appendix) and phase refinement (I, § 2.5). § 3 
discusses the application of the maximum-entropy 
algorithms to phase extension in sucrose octaacetate. 
Although the primary thrust of this paper is a priori 
phasing methods, the problem of phase extension 
described is a challenging one for any entropy- 
maximization method. Indeed, it is unlikely that any 
other entropy-maximization algorithm described in 
the literature could have coped with it. It also confirms 
the validity of the underlying theory of the behaviour 
of 2 refinement (I, § 3.3) and the variation of error 
in extrapolated phases as a function of the product 
of the observed and extrapolated U magnitudes. § 4 
describes the ab initio phasing of a small centrosym- 
metric structure using the concept of a phasing tree 
coupled with the use of likelihood as a method of 
selecting the correct nodes of that tree. Likelihood is 
shown to be a figure of merit of immense power 
even when very little phase information is available. 
§ 5 extends the method to a small non-centrosym- 
metric structure. Here the use of P(6q) oc 

t~q(x)2/qME(x) d3x [I, equation (1.4)] proves to be 
a necessary filter before likelihood by providing indi- 

cations of multimodality which are not given by likeli- 
hood alone. Likelihood now also takes on an active 
role in the process by providing a means of phase 
refinement. With only 27 unique basis-set reflexions 
for this structure, this phase-refinement procedure 
was able to reduce the mean absolute phase error by 
6.1 °. The paper is summarized in § 6 including a 
discussion of extending the method to structures of 
greater complexity. Although both structures studied 
in the present work are small and readily solved by 
traditional direct methods, they provide a valuable 
test of the theory given in I allowing one to learn 
how the process of combined maximization of 
entropy and likelihood works in practice and how it 
might best be later extended to more complex struc- 
tures and to poorer data sets (e.g. powder diffraction 
patterns and electron crystallography). 

1. The crystal structures and data preparation 

The three structures studied were: 
(i) Sucrose octaacetate (Oliver & Strickland, 1984), 

C28H380~9, which crystallizes in space group P212~2~ 
with a = 18.350, b=21.441, c=8.350A, and Z = 4 .  
This structure is found in the database of difficult 
structures, compiled by G. Sheldrick, and was used 
here as a test of phase extension. 

(ii) Diamantan-4-ol, C~4H2o O, which crystallizes 
in space group P42/n with a = 16.704, c=7-922 A, 
and Z = 8. This structure is also to be found in the 
Sheldrick database where it is included principally 
as an example of a tetragonal space group. Its struc- 
ture is shown in Fig. l (a) .  Note that the rings cluster 
around an effective molecular centroid. This has some 
significance later. 

(ii) A pyrrolizidine necine base (-)-platynecine 
(Freer, Kelly & Robins, 1987), CsH~sNO2, which 
crystallizes in space group P2~2~2~ with a = 7.810, 
b = 8.348, c = 12.459/~ and Z = 4. It has the structure 
shown in Fig. l(b). 

For both data sets the structure factors ]F hi °bs were 
normalized using the method of Wilson (1942) to 
generate normalized structure factors I Eh] °bs which 
were then converted to unitary structure factors 

OH joH 

(a) (b) 

Fig. 1. The structures of (a) diamantan-4-ol and (b) (-)-platy- 
necine. 
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]U h obs. A variance of]Uh obs 0.2, was estimated using 
the method of Hall & Subramanian (1982) in which 
contributions to 0-2 arise from 0-( Fh obs), errors in 
both the scale factor K [0-(K)] and the overall 
isotropic temperature factor B [ 0-(B) ] and their corre- 
lation r(K, B). The latter three parameters are readily 
estimated from the linear regression that the Wilson 
plot utilizes. The final expression for o'2 is 

0-2 = Uh2{0-2(Fh)/Fh2+0-2(K)/K2+s40-2(B) 

+ 2s2r( K, B) 0-(K)0-(B)/K}, 

where s = (sin 0)/A. 
Although this method of variance estimation is not 

strictly valid, and it produces error estimates which 
are much too high, the problem is not serious. This 
is because o-2 is always added to 2 (2a or ~c) 
whenever it is used and, in general, o2 ~ 2~ except in 
situations where 2 has refined to a very small value 
(see § 3). In these circumstances a solution to the 
phase problem has been achieved anyway so that 
there is no practical difficulty. The use of a o2 estimate 
still remains useful, however, in giving individual 
reflexions the correct relative weight even though the 
absolute values of these weights may be wrong. Better 
methods of estimating 0-2 are under study. 

The normalization and 0-2 estimation is carried out 
using a modified version of the MITHRIL  direct- 
methods computer program (Gilmore, 1984; Gilmore 
& Brown, 1988). MITHRIL  is also used to generate 
triplets and quartets followed by a convergence map 
which is used to propose suitable origin- and enan- 
tiomorph- (if relevant) defining reflexions. This start- 
ing set is used to define the root node (node 1) for 
the problem. An option in the CONVERGE module 
allows convergence to be resolution dependent, 
upweighting reflexions at low angle. This is because 
the entropy/likelihood maximization procedure 
works best in a situation where low-resolution 
molecular boundaries are built first, and higher-resol- 
ution detail built in subsequent nodes of the phasing 
tree. In some cases, however, especially for small 
molecules, it is impossible to find suitable U magni- 
tudes at low angle which are sufficiently large and 
which interact with other reflexions via triplets and 
quartets; in these circumstances one is compelled to 
use data at atomic resolution from the outset, which 
does make phasing more difficult. 

2. The MICE computer program 

2.1. An outline of  the MICE program 

All the calculations carried out in this paper were 
performed using a program MICE (Maximum 
entropy In a Crystallographic Environment) written 
in standard Fortran 77 for both VAX VMS and UNIX 
operating-system environments. It consists of the fol- 

lowing modules linked together by a central control 
routine. 

(i) A constrained entropy-maximization program 
using exponential modelling coupled with plane- and 
line-search routines. All the damping factors, bum- 
pers and other checks discussed in I (3 2.3.2.4) are 
employed. In all cases, default values are set for these 
parameters in the program; these rarely need to be 
changed except for handling a large number of basis- 
set reflexions. A general-purpose FFT routine, 
derived from the programs of Ten Eyck (1973), is 
used for all forward and inverse Fourier calculations. 

(ii) A likelihood module incorporating likelihood 
estimation, ~ refinement and phase refinement. 
refinement uses a Newton method on the logarithm 
of the likelihood to maintain the convexity of the 
functions and prevent convergence on a false 
minimum, which is usually at a negative value of 2. 
Likelihood is used to monitor the entropy optimiz- 
ation process for each node at every cycle. 

(iii) A module to choose which reflexions are to 
be incorporated into the basis set for phase permuta- 
tion using a method of optimal second-neighbour- 
hood extension. (See § 4.1.) 

(iv) A set of routines that employs P(~p) 
(I, § 1.2.1) coupled with a filter to examine phase sets 
produced by phase permutation before they are 
passed on to exponential modelling. (See § 5.1.) 

(v) A module to produce a centroid map (I, § 1.6) 
coupled with peak search and interpretation routines. 

MICE has a similar design philosophy to MITH- 
RIL with a mixture of interactive and batch/back- 
ground modes of operation. The interactive use is 
menu driven, and although entropy maximization 
itself is, in general, unsuitable for interactive use of 
a computer, likelihood calculations, phase refine- 
ment, reflexion selection and centroid evaluation are 
all eminently suited for interactive computation on a 
modern workstation. Indeed all the calculations in 
this paper were carried out on MassComp scientific 
workstations. 

MICE operates with an interface to the MITHRIL  
direct-methods program. This permits the input of U 
magnitudes and their variances from MITHRIL  into 
MICE, but there are two further interfaces which 
permit the phases of the basis-set reflexions to be 
output to the convergence-mapping and tangent- 
refinement modules of MITHRIL. This allows the 
option of phasing a starting set of 10-20 reflexions 
via maximum entropy and then continuing the phas- 
ing using tangent refinement, which is much faster 
although prone to other problems of overfitting 
invariants etc. 

An important feature of entropy methods is the 
real-space nature of much of the calculation; this 
permits the investigation of suitable maps by inspect- 
ing their contoured densities. A program PLOTQ 
(Henderson, Bannister & Gilmore, 1990) was used 
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for this purpose. It permits the viewing of 2D sections 
and projections along any axis and 3D contoured 
boundaries viewed from any direction to be produced 
on a wide variety of Tektronix-compatible graphics 
devices in both colour and monochrome. PLOTQ can 
also operate with the Fourier module of M I T H R I L  
to inspect poor-quality E maps; it is sometimes poss- 
ible to obtain information about atomic positions via 
inspection of contoured maps in a way that is not 
possible with a simple peak list. The M I C E  program 
structure with its M I T H R I L  and PLOTQ interfaces 
is shown diagrammatically in Fig. 2. 

Two permanent files are used by MICE. The first 
is the output file from the normalization module of 
M I T H R I L  and contains a complete set of U magni- 
tudes and their variances, the unit-cell dimensions 
and contents plus symmetry information. The second 
contains the full ,phasing tree. For each node the 
basis-set reflexions and their associated Lagrangian 
multipliers are stored along with information con- 
cerning likelihood, E values, entropy etc. Such a file 
is very compact. The only time it is necessary to store 
a complete map permanently is when passing data 
from M I C E  to PLOTQ. Even large tree structures 
are thus very modest in their disk-space requirements. 
It is also possible when storing the whole tree to 
backtrack when an incorrect node selection has been 
made. 

2.2. Line search and plane search 

Two algorithms are provided for stabilizing the 
exponential modelling process: 

(i) line search which optimizes the parameter t and 
maintains a pull-back (s) of zero (I, § 2.3.2.1) subject 
to the usual damping factors and bumpers; 

(ii) plane search which introduces a second search 
direction and bi-cubic modelling of both the con- 
straint and the entropy. 

I Normalization l - ~ D a t a i n p u t  

l Invariant 
generation 

Convergence 
mapping 

I I Tangent refinement 
i 

I 
Entropy 
maximization 

+ 
plane/line 
search 

\ 

Centroid ] 
map(s) 

I 
Peak search] 

, . ]  
Refinement 
Likelihood | 
estimation / 
Likelihood | 
phase | 
refinement / 

i Reflexion I 
i selection 

MITHRIL MICE PLO TQ 

Fig. 2. Flowchart of the MICE program and its MITHRIL and 
PLOTQ interface. 

Line search is ca five times faster than plane search 
but lacks the stability of the latter. However, the full 
power of the plane-search method is only needed 
when approaching X 2= 1-0 at a point where the 
dynamic range of to(x) is growing large. M I C E  offers 
an option of mixing both methods by using line search 
while X 2 > 1 2 "5/¥target and then subsequently utilizing 
the plane-search algorithm. This is a recent develop- 
ment and all the calculations described in this paper 
use the plane-search method exclusively. 

There is one final practical point to discuss. A basis 
set of reflexions is refined to convergence (usually 
g 2= 1.0). The ]Uh °bS are then well fitted to Iu EI via 
the Lagrangian multipliers ~'h. When new reflexions 
are added to this set, initially they have ~'h = 0"0, and 
so a situation arises in which new U's have to be 
fitted from zero in the presence of well fitted U values. 
This is not a favourable situation, and to overcome 
any problems that could arise, all the non-zero Srh are 
multiplied by 0.5, so as to reduce the fitting of I U hi °bS 
and ]U~ E before exponential modelling commences. 

3. Phase extension in sucrose octaacetate 

As a test of the plane-search algorithm, and of the 
quality of phase extrapolation in a maximum-entropy 
environment, phase extension was carried out on 
sucrose octaacetate. The top 300 U magnitudes were 
given correct phases and used as input to MICE. 
Experimental data were used throughout. This is a 
very severe test of the entropy maximization 
algorithm; the qME(x) map produced using 
coefficients that attempt to fit U magnitudes is very 
sharp with a dynamic range exceeding e I°, and this 
can pose massive stability problems. Indeed, most 
previous reports using the ME method have used IF hi 
on an absolute scale (i.e. unsharpened) to alleviate 
these problems. With the plane-search algorithm 
described in I with suitable damping parameters, 
there is no difficulty in the MICE program. The 
maximum s and t shifts (I, § 2.3.2.3) were both set to 
0.1 and a temperature factor of 7.5 ~2 was applied 
to the shifts to allow for the mixture of low- and 
high-resolution terms. This forces a better fit initially 
of the low-resolution terms and prevents an excess- 
ively fast build up of atomic detail. Because of this 
damping, more cycles of refinement are needed than 
would be the case when dealing with a smaller basis 
set. Refinement was followed to X 2= 1-0 where 

= , ~ o ~ _ u ~ Y l ( ~ ,  X 2 1/(2na+nc)~,(~,h  
h 

where na and nc are the number ofacentric and centric 
reflexions, respectively. Entropy maximization was 
then allowed to continue while keeping X 2 -- 1.0, until 
the change in entropy, AS, was less than 0.01%. 

Table 1 summarizes the results. For the first 15 
cycles, the build up of detail is slow enough that the 
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Table 1. Entropy maximization for sucrose octaacetate 
using the top 300 U magnitudes with correct phase 

angles in the basis set 

Cycle  no. g 2 cos (VS, V C )  L E n t r o p y  

1 4.10 0.9719 -0.195 x 10 -2 -0.305 x l0 -2 
5 3.60 0.8520 0.253 x l0 ° -0.183 x 100 

l0 2.70 0.7893 0.546 x l02 -0.133 x l0 t 
15 1.51 0.6237 0.743 x 103 -0.944 x l0 l 
20 1.11 0.7297 0.1589 x l04 -0 .310x  l02 
25 1.00 0.7819 0.1845x 104 -0.393 x 102 
30 1.00 0.8178 0.1919 x l04 -0.400 x l02 
35 1"00 0"8391 0-1954x 104 -0"403 × 102 

Table 2. The U-weighted (IA~[) as a function of 
I uhl I uhMEI for the extrapolated phases in sucrose 

octaacetate 

N u m b e r  o f  
I g~bsllg~EI l imits  U - w e i g h t e d  <la~l> ref lex ions  

0.001-0.0019 17 10 
0.002-0.0039 14 109 
0.004-0.0059 1 ! 199 
0.006-0.0079 9 135 
0.008-0.0099 7 34 

>0.0099 4 8 

pull-back parameter s is always calculated as zero, 
but in subsequent cycles it plays a vital role in con- 
trolling the process. The dynamic range of the final 
map is enormous: o~(x) has maximum and minimum 
values of 9.14 and -6 .51,  respectively; this generates 
a dynamic range of 6.85 x 10 2 to 1.11 x 10 -4 in qME(x) .  

It is a clear vindication of this algorithm that such a 
huge range can be readily controlled, although at the 
expense of computer time, and some loss of alignment 
between the gradients AS and AC of the entropy and 
the constraint. It is possible, however, to force align- 
ment by continuing refinement at g 2 = 1.0 beyond the 
convergence point of AS = 0.01%. Table 1 shows that 
there is a slow increase in cos (AS, AC) towards unity 
when maximizing the entropy at g 2 -- 1.0, but it is not 
worth the computer time that it would require to 
achieve a cosine value of 1.0, since there is no sig- 
nificant improvement in map quality hor in the quality 
of phase extrapolation. 

Likelihood shows the expected increase from cycle 
to cycle as detail is built up in qME(x), and the strength 
of extrapolation of U magnitudes increases. Entropy, 
too, shows the expected fall associated with the 
increase in atomic detail from cycle to cycle before 
stabilizing at -403. 

By cycle 30, 494 non-basis-set reflexions are 
extrapolated with a U-weighted mean absolute phase 
error (IA~ 1) of 11 °. (The examination of this restricted 
set of reflexions is merely a limitation of the current 
program and has no intrinsic significance.) The vari- 
ation of <IA~I> as a function of Iu°b IIuMEI is shown 
in Table 2. It can be seen that this conforms to the 
distribution developed in I (§ 1.2.4). The final values 
of ~:a and ~c are 1.05 x 10 -4 and 6.85 x 10 -4, respec- 
tively, at the end of refinement. This represents an 

effective N of 3920; this is just the behaviour dis- 
cussed in I (§ 3.3) for a situation where a great deal 
of correct phase information has accumulated. The 
tangent formula (Karle & Karle, 1966) gives a mean 
phase error of 12 ° under these conditions, but it is 
worth pointing out that tangent refinement uses the 
values of all moduli outside the 300 reflexions of the 
basis set, while the procedure used here does not. 

In these calculations, each basis-set reflexion was 
given a weight of 1/(p2 +0-2) in the maximization 
procedure where p is normally set to unity. It is, 
however, possible in the MICE program to set p = 0.0 
for the purposes of weighting. When this was done 
for sucrose octaacetate, the mean absolute phase error 
of the extrapolated reflexions fell to 9 °. This is a viable 
option when a great deal of correct phase information 
is available for the basis-set reflexions, but not recom- 
mended for other situations since it will tend to drive 
log-likelihood gains negative because of the 
overfitting of U °°s and U ME. 

4. Phasing of diamantan-4-ol 

4.1. The ab initio phasing of diamantan-4-ol 

Despite claims to the contrary (Gull, Livesey & 
Sivia, 1987), centrosymmetric structures are more 
easily solved than non-centrosymmetric ones using 
both traditional and M E methods. Diamantan-4-ol is 
a typical small organic molecule, but it also possesses 
a strongly clustered set of six six-membered rings 
(Fig. l a ) ,  and there is also a preference for phase 
reflexions having l = 0(mod 3) in the early stages of 
direct methods since such reflexions form a strong 
well connected phase island. Because this structure 
is centrosymmetric, relatively easy to solve and 
because of a lack of suitable reflexions, the phasing 
was not carried out using resolution ranges. This 
section needs to be read in conjunction with Table 3. 

The intensity data were normalized as described in 
§ 1. The MITHRIL program was run as far as the 
CONVERGE module, and the origin thus selected 
used to generate node 1 via reflexions 216 and 973 
with U magnitudes of 0.275 and 0.273, respectively. 

Node 1: There was some extrapolation taking place 
even with only two reflexions in the basis set. Indeed, 
seven reflexions having Iu°bslluMEI/2~c> 1-0 were 
correctly extrapolated. However, none of them were 
incorporated into the basis set. (See § 3.2.) Instead, 
reflexions were then selected for phase permutation 
using the following criteria: 

(i) the associated U magnitudes must be as large 
as possible; 

(ii) the reflexions must interact with the basis set 
via triplets, quartets etc. to make a maximum number 
of new phases reliably accessible, i.e. the reflexions 
must optimally enlarge the second neighbourhood of 
the basis-set reflexions (Hauptman, 1980); 
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Node 

1 

- - 1  
- - 1  
- - 1  

1 
1 - -  
1 
1 

1 
1 
2 
2 
2 

- - 2  
- - 2  

2 

- - 3  
2 

- - . ~  
- - . ~  

--2 
2 

~7 

Table 3. The phasing tree for diamantan-4-ol 

Number 
Number of wrongly 

From reflexions phased S L ,,~¢ × 103 

- 2 0 - 1.40 0.13 8.04 
1 7 2 -0 .92 0.55 7.57 
1 7 1 -0 .92 0.50 7.59 
1 7 1 -0 .92 0.50 7.59 
1 7 0 -0 .92 0.55 7.57 
2 10 2 -2.09 1-48 9-23 
2 10 3 -2-01 1.23 9.21 
2 10 1 -2-20 3.16 9.10 
2 10 2 -2 .18 2.44 9.11 
2 10 3 -2.07 2-20 9-05 
2 10 4 -2.03 2.45 9-15 
2 10 2 -2.11 2.09 9.17 
2 10 3 -2 .19 2.22 9.21 
5 10 1 -2 .09 1-45 9-23 
5 10 2 -2-01 1-22 9-22 
5 10 0 -2.13 3.14 9.10 
5 10 1 -2.17 2.41 9.13 
5 10 2 -2.08 2.23 9-04 
5 10 3 -2.05 2.47 9-14 
5 10 3 -2-13 2.12 9.15 
5 10 2 -2 .20  2.24 9.20 
8 12 3 -2.77 5.63 7.02 
8 12 2 -3.07 1-51 7-38 
8 12 2 -5.42 4-42 7.11 
8 12 1 -5.07 4.77 7.69 

16 12 2 -5.18 4.13 7.22 
16 12 1 -5.45 4-38 6.99 
16 12 1 -3-05 1-49 7-39 
16 12 0 -2.77 5-62 7.02 
22 14 2 -3.71 13.57 7.52 
22 14 3 -3-71 3.73 8.16 
22 14 4 -3.77 2.61 8-14 
22 14 3 -3 .76 5.78 7.83 
29 14 0 -3 .76 12.82 7-53 
29 14 1 -3 .76 3.87 8.17 
29 14 1 -3.76 2.84 8.13 
29 14 2 -3-76 6.14 7.87 
34 100 3 -3-37 144.20 3.08 
30 100 42 -8 .30  -106.84 3.02 
38 186 6 -10.41 200.07 2-71 

(iii) the reflexions should be inaccessible or only 
weakly accessible to current extrapolation; 

(iv) all other effects being equal, reflexions should 
be chosen at the lowest possible resolution; 

(v) it is necessary to minimize the number of new 
reflexions in order to prevent the tree from becoming 
too extensive. 

A module in MICE provides the necessary facilities 
with a command NEXT which explores the second 
neighbourhood of the basis-set reflexions and seeks 
its optimal, resolution and U-magnitude driven 
extension. For this structure, it was als0 necessary to 
force the inclusion of reflexions having l ~ 0(mod 3). 
In this way, two reflexions were then selected for 
phase permutation, 107 (IUI =0-234) and 854 (IUI = 
0.184). Their phase permutation gave nodes 2-5. 

Nodes 2-5: All four nodes had identical entropy 
values of -0 .92 .  The likelihoods, however, were 0.55, 
0.50, 0.50 and 0.55, respectively. For a centrosym- 
metric structure of this complexity and with such a 
small basis set, experience has shown that these 
differences may be considered significant. Accord- 
ingly, nodes 2 and 5 were selected. Using the same 

criteria as before, reflexions 18, 0, 0, 18, 2, 0 and 530 
having U magnitudes of  0.411, 0.391 and 0-259, 
respectively, were permuted for both nodes. This gave 
rise to 16 nodes numbered 6-21 of which nodes 6-13 
were connected to node 2 and the remainder to 
node 5. 

Nodes 6-21: At this point there are only seven 
basis-set reflexions, but the power of the likelihood 
function, even in its diagonal approximation, is con- 
siderable. All the nodes have approximately the same 
entropy but the likelihoods vary from 1.22 to 3.16. 
Two nodes, 8 and 16, have likelihoods significantly 
higher than any others at 3.16 and 3.14. (Node 16 is 
indeed the correct one.) No other figure of merit in 
direct methods has this ability to discriminate cor- 
rectly knowing only the phases of so few reflexions. 
Indeed, earlier experimentation in direct methods 
with early figures of merit used in tangent refinement 
showed all figures of merit to be unreliable at this 
level of phase information. Refections 992 ( [U[=  
0.267) and 10, 5, 4 ([ U = 0-253) were then permuted 
for both these nodes to give nodes 22-25 connected 
to node 8 and 26-29 connected to 16. 



C. J. GILMORE, G. BRICOGNE AND C. BANNISTER 303 

Nodes 22-29: Node 22 has a likelihood of 5.63 and 
that of node 29 is 5.62. These two nodes also have 
much higher entropies than any other in this set. 
Nodes 24, 25, 26 and 27 also have high likelihood 
values in the range 4.13-4.77, but their entropies vary 
between -5 .07  and -5 .45 which is much lower than 
that of -2 .77  for nodes 22 and 29. Note also that the 
mean value of 2c has fallen to 7.23 for this set of 
nodes from a mean value of 9.15 for the previous 
level. Indeed, the correct node has one of the smallest 
values of this parameter although the value of X~ is 
not a reliable indicator of the strength of an individual 
node depending as it does on the nature of the crystal 
structure, and the data resolution (I, § 3.2.4). Nodes 
16 and 22 were then passed to the next level by the 
permutation of reflexions 840 and 983 with U magni- 
tudes of 0.265 and 0-260, respectively. This gave 
nodes 30-33 connected to node 22 and nodes 34-37 
connected to 29. 

Nodes 30-37: There are now 11 reflexions in the 
basis set and the power of the likelihood is enormous. 
Just two nodes, 30 and 34, with L values of 13.57 
and 12.82 are kept. Note their relatively small values 
of 2~. At this point the extrapolation is very strong 
and almost error free for node 34. Indeed, inspection 
of a centroid map revealed the whole structure in the 
top 20 peaks of the map (based on only 11 basis-set 
reflexions!). However, the phasing process was con- 
tinued by incorporating a total of 89 extrapolated 
reflexions having I ul°bsI uMEI/2Zc > 0"3 into the basis 
set for both nodes 30 and 34. The incorporated 
reflexions were given weights wh derived from their 
centroids such that 

Wh = tanh ( Uh obs uME/22c) .  

This gave nodes 38 and 39. For the former, 42 phases 
in the basis set are incorrect, whilst for the latter there 
are only 3. 

Nodes 38 and 39: These nodes involved a two-stage 
process of entropy maximization in which the 
extrapolated reflexions were: 

(i) incorporated into the basis set with centroid 
weights wh from (1) above and subjected to entropy 
maximization; 

(ii) re-weighted according to the new values of 
I UMEI produced by (i) and the entropy optimization 
repeated. 

For node 38 the result was a collapse of the likeli- 
hood to -106.84 and a massive entropy decrease to 
-8.30,  whereas node 39 refined to L = 144.20 and an 
entropy value of -3.37.  It is noteworthy that the three 
wrongly phased reflexions for this node had their 
centroid weights reduced during the re-weighting pro- 
cedure (ii) above. The value of 2c fell to 3.02 x 10 -3 

which, as for sucrose octaacetate, is an indication of 
correct phasing. Node 38 was discarded; for node 39 
an extra 86 extrapolated reflexions were accepted to 
give node 40. 

Table 4. Peak heights in the final centroid map for 
diamantan-4-ol 

Peak no. Peak assignment Peak height 

1 O 102 
2 C 92 
3 C 89 
4 C 87 

15 C 59 
16 Noise 34 
17 Noise 15 

Node 40: Of the 186 basis-set reflexions six were 
incorrectly phased. However, the final solution after 
the standard re-weighting calculation gave a likeli- 
hood of 200.07 and an entropy of -10.41 with 2c = 
2.71 × 10 -3. The quality of the final centroid map was 
excellent with the O atom distinguished from the C 
atoms and with no trace of a peak at the ring centroid. 
Table 4 lists the top 17 peaks in the map and their 
interpretation. The best E map from M I T H R I L  for 
diamantan-4-ol was also very good but it did not 
distinguish atom type. 

4.2. Accepting extrapolated reflexions - a caution 

Extrapolation is very strong even at early stages of 
the phasing process for diamantan-4-ol. It is, 
however, essential to refrain from incorporating any 
extrapolated reflexions into the basis set until all 
strong Uh are accessible to the extrapolation pro- 
cedure. As an example, consider node 34. There were 
ten reflexions having I U°bslIuMEI/2 c > 0"7 correctly 
extrapolated. The centroid map showed the outline 
of the molecule, but it was dominated by a large peak 
at the centroid of the system of six six-membered 
rings. Acceptance of these ten extrapolated phases 
into the basis set, even though they are correct, and 
performance of entropy maximization reinforced this 
central peak and greatly weakened the extrapolation. 
The likelihood function proved a very sensitive 
indicator of this by giving a value of L = - 7 5 - 6 3  
whereas the entropy remained uncritical at -3 .28.  
This is not an isolated example: in one case it was 
possible to produce a set of reflexions for diamantan- 
4-ol in which there are 150 basis-set reflexions with 
only 19 incorrectly phased that produced a map with 
the strong central peak and only small ghost atoms 
at the atomic sites around it. The ME method will, 
in general, always behave in this fashion until most 
of the large U magnitudes are accessible via extrapo- 
lation, at which point the centroid map usually shows 
the crystal structure anyway so that the incorporation 
of extrapolates into the basis set is not needed. This 
problem was probably the reason that Gull, Livesey 
& Sivia (1987) were only able to locate the Sn and 
C1 atoms in CloHlaC17OnSn (Miller & Schlemper, 
1978) despite phasing 159 basis-set reflexions. 
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There is, however, one situation where augmenta- 
tion of the basis set with extrapolates can be valuable. 
If two or more equivalent nodes have very similar 
likelihoods and entropies such that they are difficult 
to distinguish, it is possible to collect some extrapo- 
lated reflexions and carry out the two-stage process 
of entropy maximization coupled with centroid 
weighting as described above. In general, all such 
nodes will acquire negative likelihoods but they 
should be distinguishable on the grounds of their new 
likelihoods and entropies as long as the same 
reflexions were used to augment the basis set in all 
cases, so that like is being compared with like. These 
augmented nodes are then discarded so that they are 
used only in a passive way. In fact, this procedure 
was used to distinguish nodes 38 and 39. This is 
possibly an important technique in solving more com- 
plex structures. 

4.3. The use of  computer graphics 

It is, of course, also possible to monitor the phasing 
process via the inspection of centroid maps. Fig. 3 
shows the development of the structure in real space 
in x sections centred around z = 0.2. The first of these 
(Fig. 3a) is based on only two reflexions, but it already 
contains some correct structure; Fig. 3(b) is the 
equivalent Fourier section for node 18 and is based 
on a basis set of ten reflexions. There are some 
spurious peaks but most represent atom sites, and 
Fig. 3(c) shows the final map. The peaks are very 
sharp and locate the atoms very precisely. Again the 
stability of the exponential modelling-plane-search 
algorithm in dealing with such maps is demonstrated. 
A problem does arise with aliasing errors in these 
circumstances necessitating very finely sampled 
maps, but this is only a problem of computer resour- 
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ces. In contrast to Figs. 3(a) - (c) ,  Fig. 3(d) represents 
node 20 which has ten basis-set reflexions of which 
three are incorrect; there is an excessive build up of 
large peaks at the centres of rings making no chemical 
sense. In difficult cases, this monitoring of centroid 
maps is an invaluable tool that is unavailable to 
traditional direct methods. 

5. Phasing of (-)-platynecine 

5.1. The use of P(6q) 

This section introduces the use of P(6q) (I, § 1.2.1) 
so a preliminary discussion concerning its use is 
necessary. P(6q) can be used with any qME(x). A set 
of reflexions is chosen according to certain criteria 
discussed below, and their phases permuted (using 
magic integers for the acentric reflexions). Each 
permutation gives rise to a 6q(x) which is a 

I r °bs U ME. Fourier synthesis using the coefficients ~'h - 
P(6q) is calculated by computing the integral of 
6q[x)2/qME(x). A minimum value of P[6q) is 
required. The EXTEND module in MICE performs 
the necessary calculations. This technique has several 
important features: 

(i) Each phase permutation requires only one 
Fourier synthesis and a map division and so is very 
fast. (It is possible to devise a much faster reciprocal- 
space algorithm but this has not yet been pro- 
grammed.) 

(ii) It acts as a filter (the P filter) to exponential 
modelling; the reflexions to be permuted are first 
subjected to the P filter and only those with a certain 
minimum P are passed to the much slower exponen- 
tial modelling step. 

(iii) As discussed in I (§ 1.2.1), the likelihood func- 
tion uses only moduli, but P(Sq) incorporates phases 
into the calculation. It therefore acts as a useful tool 
in exploring structure-factor space from the current 
node before moving to various P minima. 

P(3q) cannot be used indiscriminately', there are 
certain necessary conditions for its successful 
implementation: 

(i) qME(x) must have developed sufficient detail. 
Thus maps based on a very small basis set or utilizing 
only small U magnitudes may have insufficient con- 
trast for its successful use. This is made manifest by 
a set of P(3q) values that are virtually constant. In 
addition, division by qME(x) is inherently unstable 
and the same constraints in division must be 
employed that are used in exponential modelling. In 
general, the method is not sensitive to limits in qME(x) 
although these can be set by the user. 

(ii) The reflexions which act as coefficients for 
6q(x) should be chosen using the same criteria of 
optimum second-neighbourhood extension discussed 
in § 4.1. It is also advantageous to choose reflexions 
for which there is a small but finite extrapolated 
magnitude from the current qME(x). 

Table 5. The use of ~ 6q2(x)/ qME(x) d3x a s  a filter in 
the phasing of ( -  )-platynecine 

Set no. ~ Sq2(x)/qME(x) d3x 

( a )  Fou r  centr ic  phases  p e r m u t e d  

U-weigh ted  

<18~1> 

(b)  Three  

1 1.79 132 
2 1.66 180 
3 1-83 85 
4 1.72 133 
5 2.07 88 
6 1-87 136 
7 1.48 41 
8 1-30 89 
9 1.48 91 

11 1.51 44 
12 1.41 92 
13 1-76 47 
14 1-57 95 
15 1.16 0 
16 1.00 48 

centr ic  phases  p e r m u t e d  

1 2"40 180 
2 3"37 107 
3 2"38 116 
4 3"32 43 
5 3"33 137 
6 2"38 64 
7 3"37 73 
8 2"40 0 

(iii) Table 5(a) shows a typical successful use of 
P(6q). It is taken from node 21 in the phasing of 
(-)-platynecine.  Two sets (15 and 16) define a clear 
minimum with P = 0 . 9 9  and 1.16, respectively. The 
remaining sets have P values between 1.30 and 2.07. 
The correct set has P = 1.16. Table 5(b) shows another 
successful use of P filtering. Again, the results come 
from (-) -pla tynecine but were not used subsequently. 
In this case two sets of results are produced: one has 
P around 2.4, the other 3.3. In this case the four sets 
at P = 2.4 are passed to exponential modelling and 
half the sets are rejected. 

(iv) Situations where there is no clear minimum 
or where all the P(6q) values are constant are clear 
indications that either qME(x) has insufficient contrast 
or that unsuitable reflexions have been chosen as 
coefficients for 6q(x). 

5.2. The ab initio phasing of (-)-platynecine 

This section must be read in conjunction with 
Table 6. The intensity data were processed as 
described in § 1. 

Node 1: Unlike diamantan-4-ol, the distribution 
of intensities as a function of (sin 2 0)/A 2 permits the 
use of resolution shells to phase (-)-platynecine.  At 
a resolution of 2.24 A, four reflexions (310, 012, 303 
and 231) having U magnitudes of 0.282, 0.243, 0-177 
and 0.167, respectively, were used to define the origin 
and the enantiomorph. These reflexions were given 
their true phases to facilitate comparison between 
observed and calculated phases and to save on the 
initial phase permutation of 231. For entropy 
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N o d e  

- - 1  
- - 2  
- - 3  
----4 
- - 5  

6 
- - 7  
- - 8 - -  
-----9 
--10 
--11 
--12 
--13 
--14 
--15 
--16 
--17 

18-- 
19 
20--- 
21 

r--23 

Table 6. The phasing tree for (-)-platynecine 

R.m.s.  N u m b e r  o f  R e s o l u t i o n  

F r o m  <1~,1> <IA~I> r e f l ex ions  S L 2a  × 103 2< x 103 (,~k) 

- 0.0 0.0 4 -0 .17 0.01 7.51 1-83 2.24 
1 50.0 90.0 8 -0.95 -0.35 5.17 8.60 2.24 
1 21" 8 63 "7 8 - 1 "34 - 1 "62 5 "25 8"40 2"24 
1 28"7 63"7 8 -0"96 -0"29 5" 18 8-65 2-24 
1 52" 1 90"0 8 - 1 "35 - 1"57 5.27 8-42 2-24 
1 21-8 63"7 8 -0"96 0"05 5"08 8-10 2-24 
1 45-1 90"0 8 - 1"37 -0"29 5" 11 7"87 2.24 
1 0"5 1-8 8 -0"95 0-06 5-06 8-10 2-25 
1 23-8 63.7 8 -1"37 -0"28 5" 10 7"89 2.24 
1 72"9 110-2 8 -0"98 -0"22 5"07 6-88 2-24 
1 96"3 127-3 8 - 1"53 0"07 4"97 7-14 2-24 
1 51"6 90"0 8 -0-98 -0"25 5-12 6.97 2-24 
1 75"0 110"2 8 -1"53 0"06 5"01 7-25 2.24 
1 44.7 90"0 8 -0"95 -0"40 5"20 8-26 2-24 
1 68"0 110"2 8 - 1"45 -0-67 5" 16 8"57 2-24 
1 23"3 63"7 8 -0"95 -0"32 5-18 8"25 2-24 
1 46.7 90"0 8 - 1"45 -0"58 5" 12 8"58 2-24 
8 4"7 15"8 11 -1" 18 0"29 4.07 8-28 1-50 
6 21-4 56"5 11 - 1-44 0-70 3"90 8.20 1-50 

18 11 "3 23"4 16 -2.01 1.21 4.20 6-40 1-40 
20 9"0 21 "5 19 -2.15 2.82 7.61 2-82 1-40 
21 7.4 19-5 23 -2"86 9"27 4"63 6-04 1"40 
21 14.7 42"2 23 -2"45 6-60 4"86 6"30 1-40 
23 14"7 42"2 27 -4"12 15"02 5"81 8"81 1-10 
24 9"4 21.1 32 -5"98 36.73 6"38 11" 12 0-78 

maximization, this is a favourable starting point with 
large U magnitudes available at low resolution. A 
section of the current centroid map is shown in 
Fig. 4(a). It can be seen that most atoms lie on regions 
of relatively high density. 

Nodes 2-17: With the resolution maintained at 
2.24 A, four reflexions (302, 202, 220 and 102) (U 
magnitudes of 0.242, 0.220, 0.237 and 0.239) were 
given permuted phases. Since all are centric reflexions 
in space group P2~2~2~, this generated 16 nodes. After 
entropy maximization only four nodes had a likeli- 
hood >2.0,  and, of these, two had much smaller 
entropies than the others. Thus two nodes 6 and 8, 

of which the latter is marginally preferred, were 
selected. 

Nodes 6 and 8: The resolution was now extended 
to 2-0 A for both nodes by permuting reflexions 132, 
320 and 233 with U magnitudes of 0.203, 0.193 and 
0.163, respectively. Magic integers were used to per- 
mute the two acentric reflexions so that 28 phase sets 
were produced. Nodes 6 and 8 both had a qME(X) 
that contained sufficient contrast to permit the use of 
P(Sq) so that these nodes were first P filtered. For 
node 6 the best set had P(Sq)= 1.12 with the next 
having P(Sp)= 1.17. For node 8 these figures were 
1.07 and 1.15, respectively. In both cases these 
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minima are sufficiently well defined that only the best 
set was carried forward in each case to a full entropy 
maximization thus giving nodes 18 and 19. 

Nodes 18 and 19: An interesting situation arises 
here in distinguishing the best node. Node 18 has 
L = 0 . 2 9  and S = - 1 . 1 8  whereas node 19 has S =  
- 1 . 4 4  and L=0 .70 .  Thus there is some conflict 
between the requirement of maximum entropy and 
maximum likelihood. In these circumstances NS + L 
is used as a joint indicator, where N is derived from 
a weighted average of 1/£c and 1/22a (I, § 3.2.4). 
Node 18 had NS+ L = - 8 2  whereas the value for 
node 19 was -104.  Thus node 18 was selected; a 
section from the relevant centroid map is shown in 
Fig. 4(b). It can be seen that the correct atomic detail 
is emerging. The resolution was increased to 1.5 
by permuting reflexions (422, 216, 151,117 and 241) 
with U's of 0-238, 0.238, 0.206, 0.191 and 0.168, 
respectively. 48 phase sets were produced, and these 
were filtered via P(6q). The best solution had P(6q) = 
2-9 with the next-ranked solution having P(Sq) = 3.1. 
Thus the first set only was passed to entropy maximiz- 
ation to give node 20. 

Node 20: The resolution was increased to 1.4 A by 
permuting three centric reflexions (203,530 and 028) 
with U's of 0.201, 0.317 and 0-212, respectively. 
Using P(Sq) as a filter, the best set had a value of 
P(6q) = 1.8 with the rest having P(6q) > 2.3, so only 
one set was passed to entropy maximization to give 
node 21. 

Node 21: The resolution was maintained at 1.4 
and four further centric reflexions (430, 530, 052 and 
051) were given permuted phases and filtered via 
P(6q). There were two permutation sets with much 
lower values of P(6p) than the rest having values of 
0.99 and 1-16, respectively, whilst the third-ranked 
set had P(6p) = 1-30. The two best sets were used to 
generate nodes 22 and 23. 

Nodes 22 and 23: Node 22 had a log-likelihood 
gain of 9.27 compared to 6-60 for node 23. However, 
the two entropy values were - 2 . 8 6  and - 2 . 4 5  so that 
the two indicators are contradictory. As usual in these 
circumstances, inspection of N S + L  is used. For 
nodes 22 and 23 the values are -128  and -109 ,  so 
that node 23 is clearly preferred. Moreover, a centroid 
map at this juncture showed over half the structure 
for node 23 but no recognizable fragment for node 22. 
For both reasons, the latter was therefore discarded. 
The resolution was then extended to 1.1 A by permut- 
ing 451, 171,270 and 527 with U's of 0.283, 0.252, 
0.251 and 0.244, respectively. The P(6q) filter pro- 
duced one obvious minimum, and this was used to 
generate node 24. 

Node 24: This node was subjected to phase 
refinement by likelihood optimization. (Previous 
nodes had also been phase refined, but there had 
been no significant change in the phase angles.) The 
mean absolute phase error was reduced to 7.5 ° from 

Table 7. Phase refinement on node 25 for (-)-platy- 
necine 

There  are 19 centr ic  and 13 acentric reflexions. The  figures in 
parentheses  denote  the <1~1> and r.m.s. A~ values for  the acentr ic  
reflections only. All phase angles are in degrees. 

Cycle no. <1~1> R.m.s. A~ S L 

0 7.5 (18-4) 17.0 (26.7) -5.98 36.73 
1 6.2 (15.2) 13.8 (21.7) -6.48 45.47 
2 5.3 (13.0) 12.0 (18.9) -6-23 48.80 
3 5.0 (12.3) 11-5 (18.1) -5.87 49.33 

Table 8. Peak heights in the final centroid map for 
( -  )-platynecine 

Peak no. Peak assignment Peak height 

1 O 143 
2 O 115 
3 N 68 
4 C 52 
5 C 50 

11 c 23 
12 Noise 18 

a value of 8.3 °. The r.m.s, value was reduced from 
19.0 to 17.7 °. However, of the 23 basis-set reflexions 
which were being refined, only 11 were acentric; the 
improvement for these reflexions only is 17.3 to 15.7 ° 
for the mean absolute phase error and 27.4 to 25.5 ° 
for the r.m.s, error. This is only a small improvement, 
but one reflexion (117) which had the largest phase 
error had its phase improved from -64  to - 84 ° (with 
a true value of -90°) .  The resolution was then exten- 
ded to 0.78 A by permuting the phases of 860, 911, 
808, 707 and 761 with U's of 0.382, 0-321, 0.306., 
0-301, 0.293. The best set had P(Sq) = 10-5 with the 
next sets having P = 11.5, 11.6, 11 .8 , . . . .  Thus only 
one set was passed to entropy maximization to give 
node 25. 

Nodes 25: The centroid map showed the complete 
structure. The basis-set reflexions were given four 
cycles of likelihood phase refinement the results of 
which are summarized in Table 7. It can be seen that 
there is a very significant improvement in the phase 
angles which is paralleled by an increase in likelihood 
from 36 to 49. The resulting centroid map gave a very 
clean map; the required 11 atoms were the top 11 in 
the list with peak heights reflecting atomic type as 
shown in Table 8. This map is of better quality than 
the best E map from MITHRIL. The latter does dis- 
tinguish the O atoms but not the N and has a spurious 
peak in the centre of one five-membered ring which 
is not present in this map. Fig. 4(e) shows a typical 
section of this map with the customary sharp well 
placed peaks. 

There are 289 extrapolated phases at this point 
having [ Uh[ > 0" 14 and having a mean absolute phase 
error of 28 ° . It is also possible to collect extrapolated 
reflexions, but even greater care is needed in this 
non-centrosymmetric situation because of phase 
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errors and their accumulation. The calculation is so 
sensitive to the number and mode of incorporation 
of extrapolates that it is not worth the effort since the 
entire structure is clearly visible in the final map. 

6. Summary and concluding remarks 

We have demonstrated the viability of the approach 
presented in paper I. It is clear that the maximum- 
entropy method is a powerful tool for phase determi- 
nation and, when combined with likelihood, is cap- 
able of solving the crystal structures of small organic 
molecules. Likelihood is a unique discriminator of 
phase sets when used as a figure of merit in a multisol- 
ution environment, and also an equally powerful tool 
in phase refinement. 

The algorithms we have devised are stable even 
when employing U magnitudes, and, since they are 
based on the FFT, are generally applicable to any 
symmetry and any size of problem. The processor 
time required is a simple function of map size. The 
ME method clearly requires much more computer 
time than traditional methods, but there are several 
features which can compensate: 

(i) For small basis sets, where stability is much 
less of a problem, it is possible to construct much 
faster algorithms than used here; we have written a 
general-purpose constrained entropy-maximization 
program that works irrespective of the basis-set size 
as a test of the method. 

(ii) The exponential modelling algorithm is readily 
vectorized, and can therefore be used with a variety 
of cheap vector and array processor boards that are 
currently available for scientific workstations as well 
as supercomputers. We are currently investigating 
this. 

(iii) For difficult structures it is not unusual for a 
conventional direct-methods program to consume a 
very large amount of processor time. If the ME 
method can be extended to such structures the times 
could be strictly comparable. 

There is an additional benefit that ME confers on 
the phasing process that has hitherto only been 
indirectly alluded to when discussing resolution 
shells: the ME method in its current implementation 
is stable regardless of data quality, sampling and 
resolution. Traditional direct methods require data 
that span at least the Cu sphere and that fully sample 
reciprocal space; indeed, the spectacular improve- 
ments in direct-methods success in the past two 
decades owe much to the wide availability of the 
current generation of four-circle diffractometers. 
However, it means that direct methods still cannot 
readily deal with: 

(i) poor-quality data sets from weakly diffracting 
or very small crystals; 

(ii) X-ray and neutron powder data where there is 
an effective loss of resolution because of peak overlap, 

even with synchrotron sources and neutron spallation 
sources; 

(iii) fibre diffraction. There has been one successful 
application by Marvin, Bryan & Nave (1987) to 
improve a map initially phased by isomorphous 
replacement; 

(iv) electron crystallography using a combination 
of phased transform data from the electron micro- 
scope image and higher-resolution unphased trans- 
form data. 

In all these cases, the ME method offers a possible 
way forward. We are currently researching the appli- 
cation of the ME method to powder diffraction 
(Bricogne, unpublished results; Henderson & Gil- 
more, 1989) and electron crystallography. It seems 
too that there is an applicability of the method to 
much larger and more complex molecules, although 
a more complicated phasing tree will be needed as 
the discrimination between nodes will inevitably be 
more difficult. 
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